↓
 ↑
Регистрация
Имя/email

Пароль

 
Войти при помощи
Временно не работает,
как войти читайте здесь!
Viara species Онлайн
4 мая 2023
Aa Aa
#вопрос #фанфикс_знает_все #внезапно

Всех знакомых математиков уже опросила, теперь обращаюсь ко всем, вдруг кто что знает :)
Есть экстремум. Есть точка экстремума.
Условно говоря:
Экстремум - это игрек.
Что такое точка экстремума? В смысле это икс или две координаты?
Насколько я понимаю, "точка в области определения функции" - это не есть точка на плоскости.
Но кто ж знает.
Ответ очень прошу сопроводить ссылкой на англоязычный источник (не Википедию).
А то я запутался.
Если кто-нибудь разбирается - заранее спасибо.
Ква.
4 мая 2023
16 комментариев из 27
Матемаг
Нет. Функция Дирихле как стандартный пример.
Экстремум - это игрек.
Что такое точка экстремума? В смысле это икс или две координаты?
в выражении "максимум/минимум функции равен 5" (которое вы, вероятно, подразумевали под "экстремум - это игрек") подразумевается, что в некоторой области определении (для некоторых x) максимальное значение функции = 5. Зависит не только от поведения функции, но и от области определения. Например, у функции y = x нет никаких изгибов, это прямая. Т.е. нет никаких точек, где производная обращается в ноль или не существует. А вот максимум и минимум (экстремумы) на любом отрезке есть. Зато нету на любом интеграле.

Точка экстремума - это точка, принадлежащая некоторой области определения, в которой функция максимальна или минимальна. На декартовой плоскости это некие (x, y). То есть, экстремум ФУНКЦИИ (максимум или минимум выражения y(x)!) равен, например, 5. Это y. А точка экстремума - это, например, (-3; 5), т.е. включая и x. Для более сложных типов функций, например, в многомерном или бесконечномерном пространстве, будет больше аргументов функции. Для всяких неявных функций некорректно говорить об экстремуме функции, но можно говорить о точке экстремума или о критической точке, ну, вы поняли, потому что там не выражение y = f(x) = , а f(x, y) = 0. И далее по аналогии.
Показать полностью
Матемаг
График - это, ну, то же самое, разве нет?
На достаточном уровне абстракции – да, но в большинстве образовательных задач это банально неудобно. Как насчёт изобразить точный график любой функции с точкой разрыва второго рода? Банальный y=tg(x) какой-нибудь или 1/x. Именно поэтому в образовательных задачах лучше делать акцент именно на том, что график функции – лишь иллюстрация самой функции, но не она сама.
Заяц, погоди, а в чём проблема? Это две прямые на графике. Когда мы не можем точно изобразить график по каким-то причинам, его рисуют приближённо, но это, хм, рисунок графика, а не "настоящий" график, который - идеальный объект. Но даже идеальное изображение функции Дирихле - это 2 прямые. Потому что для обоих типов значения аргумента получается... как там правильно... всюду плотная штуковина. То есть, какую бы малую область определения мы ни возьмём, всегда будет не просто бесконечность значений функции, а "равномерно распределённая" бесконечность значений функции, поэтому изображать надо тупо прямыми, не вижу никаких проблем. Можно что-то придумать с графиками, которые изображаются бесконечным числом отдельных точек, т.е. не просто всюду прерывные, но ещё и нигде не плотные, но, по аналогии, мы же какой-нибудь синус икс не рисуем "до конца"? Не рисуем. Потому что это физически невозможно, настоящий график функции бесконечен, а мы живём в конечном мире. Так же и здесь, просто рисуем приближение.

Ещё раз подчеркну, что график как математический объект и график как реальное изображение этого объекта - разные вещи.
Показать полностью
ReznoVV, ну тут же инженерный подход используется, нет? Когда нам НАДО изобразить, то есть некоторая цель. Показать, что так-то и сяк-то, например. Проиллюстрировать поведение функции. Соответственно, изображение графика подгоняют по масштабу и месту так, чтобы оно иллюстрировало. Или показывало. Или можно было, хм, графически найти решение уравнения (это, вроде, очень клёвый лайфхак, кажется, финикийский торговец мне как-то кидал ссылку на книгу по практике ядерных взрывов для офицеров, там какие-то расчёты делались с помощью предварительно начерченных в книжке графиков с топовой точностью). Или ещё что-то. Идеальный объект нельзя реализовать в мир, но можно изобразить некую часть объекта, которая нас интересует, с нужной точностью. Ну. За исключением совсем уж неизображаемой хни, но неизображаемость - это ТОЖЕ иллюстрация, ага.
Матемаг
Короче, если для инженеров, то можно не заморачиваться. Если с точки зрения науки, то не выйдет. Ну и если очень грубо, то экспериментаторов обычно всякие тонкости не очень интересуют, а теоретиков — очень интересуют.
*зашла в тему, перекрестилась, с ужасом вспомнив первые курсы в универе на прикладной математике, вышла*
Не хочу быть умной, нафиг это.
ReznoVV
На всякий случай напомню, что функция – это не график... График... – просто удобный способ иллюстрации этого правила, не более.
Карта это не территория (с)
Матемаг
Или можно было, хм, графически найти решение уравнения (это, вроде, очень клёвый лайфхак, кажется, финикийский торговец мне как-то кидал ссылку на книгу по практике ядерных взрывов для офицеров, там какие-то расчёты делались с помощью предварительно начерченных в книжке графиков с топовой точностью).
Это называется номограмма. Ядерных взрывов не видел, но в газо- и гидродинамике они использовались очень широко - пока их не вытеснили компьютеры с готовыми программами.
Экстремум - переломный момент в жизни функции. Точка экстремума - координаты переломного момента. Человек - тоже функция, только пипец какая сложная, график с точками экстремума фиг нарисуешь
madness
Угу. Шел себе по жизни, а потом экстремум и гипс.
Виктор Некрам
Мдя, только об этом подумала) только про кирпич на голову
Viara species Онлайн
madness
Без точек экстремума график ещё сложнее нарисовать :D
Если эти точки у функции есть.
Viara species Онлайн
Большое всем спасибо!
Потихоньку запихиваю информацию в свой не то чтобы гуманитарный, но все же маленький мозг :D
Но если во время запихивания придут идиотские вопросы - я ж задам!
Viara species Онлайн
Кажется, я уместила в голову все, что могла :D
Как минимум на том уровне, который был мне нужен.
Хотя поняла, конечно, далеко не все. Буду пытаться дальше))
Еще раз всем спасибо!
(и теперь я знаю, кого прицельно приходить мучить))
вот наиболее общий подход к вопросу
https://ru.wikipedia.org/wiki/Задача_оптимизации

то же но в пространстве функций
https://ru.wikipedia.org/wiki/Оптимальное_управление
ПОИСК
ФАНФИКОВ









Закрыть
Закрыть
Закрыть