Коллекции загружаются
Такой вопрос. Может кто-нибудь с навыками гугления или математики выше 9000 найти простое доказательство, что непрерывные кривые, соединяющие противолежащие точки выпуклого четырёхугольника ВНУТРИ НЕГО обязательно пересекутся? Или, иначе, дано:
- Плоскость, 2-мерное евклидово пространство - 2 произвольные несовпадающие прямые - На двух любых соседних лучах их пересечения берём 4 различные точки: любые 2 на одном, любые 2 на другом. - Соединяем вторую от точки пересечения точку первого луча с первой от точки пересечения второго и наоборот произвольными кривыми. Вопрос: почему они пересекутся? Подразумевается, что мне не надо будет осваивать 4-томный 6-летний курс топологии, чтобы понять ответ; матан, включая рассуждения на языке эпсилон-дельта понимаю, но не совсем понимаю, как их присобачить к кривым, не являющимся однозначными функциями с любой (бесконечной в том числе) длиной и возможностью произвольного числа самопересечений. http://dxdy.ru/topic81619.html - единственная найденная на тему ссылка. Куча топологических (печаль-тоска-Нургл) рассуждений прилагается. ...к вопросу "зачем мне это?" Ну. Одна любопытная задачка к такому сводится. Ещё интересней было бы увидеть конструктивное доказательство существования, к слову. #вопрос #математика #моё 21 ноября 2014
|
Ой, у меня многозадачность прямо нездоровая. Я часто не могу только слушать пару, и всё. Лучше воспринимаю, когда делаю два дела одновременно. Это мешает.
|
Матемаг Онлайн
|
|
Cheery Cherry, а я б хотел себе многозадачность.
Mikie, когда вы упомянули "праобраз" и "компакты", я автоматически перестал читать. Выше в посте сказано про топологию:) |
получается, есть такие точки, лежащие и в АГ и в ВГ
А может, прообраз АГ — это [0, 1], а ВГ — (1, 2]. |
Cheery Cherry
АГ и ВГ - компакты |
Матемаг Онлайн
|
|
Mikie, *с подозрением* точно? Ладно, прочту.
"АГ и ВГ - компакты" - докажи! Cheery Cherry, "А может, прообраз АГ — это [0, 1], а ВГ — (1, 2]" - прямая может быть свёрнута в отрезок же или интервал. Они все "топологически эквивалентны", на точный термин моих знаний не хватает. Потому что имеют одну и ту же меру. |
Матемаг Онлайн
|
|
Между прочим, если уважаемая Софья ещё здесь, а можно ссылку или намёк, где искать, что любую функцию можно представить аналитически?
|
Матемаг
Я забыла упомянуть про непрерывность)))) Ибо мы вроде как с ее учетом обсуждали... |
Cheery Cherry, я просто расписал подробнее.
Это плохо? |
Мики, то ли используете точку граничную, а не предельную, то ли где-то опечатка в АГ и ВГ, то ли я вас пе понимаю.
|
Матемаг Онлайн
|
|
Софья, хорошо, уточню, тогда где искать намёки или теоремы, что любые непрерывные функции обязательно можно определить аналитически?
|
Матемаг Онлайн
|
|
Mikie, угу, докажите, что кривая Г0 будет предельной. Нам про неё известно совсем ничего: она непрерывна, соединяет вот эти точки. Всё.
|
Граничная точка это либо предельная точка либо изолированная точка. Изолированных точек у нас как бы нет.
|
Матемаг Онлайн
|
|
*зануда ON*
Хорошо, тогда давайте глянем, почему ваше построение возможно, т.е., почему такое деление можно совершить. *зануда OFF* |
Эммм Г0 - компакт, потому что непрерывная кривая.
|
не понял.
Мы ничего не строим. Мы называем. Назвали мн-во А. Увидели, что оно компакт. И так далее. |
Матемаг Онлайн
|
|
Для того, чтобы подмножество в R^n было компактом, необходимо и достаточно замкнутости и ограниченности, да, теперь посмотрел, ограниченность по условию задачи, замкнутость - потому что непрерывная.
*ищет, к чему бы придраться* |
Матемаг Онлайн
|
|
Всякий ли функциональный ряд сходится?
Любую ли функцию можно представить функциональным рядом? Почему? |
Так я не говорю о сходимости))))
|
Матемаг Онлайн
|
|
А как тогда проверить, верный ли ряд, соответствует ли он функции в каждой точке? Само представление функциональным рядом утратит смысл.
|
Есть бездна невычислимых чисел
Если мы никакое из них не можем задать, то значит ли это, что их не существует? Так же и с функциями. |
Ну вы же назвали "предельные" точки, а они не обязательно граничные.
|
ну и что? при чем тут граничные точки вообще, если замкнутое мн-во - это которое содержит свои предельные точки?
|
Матемаг Онлайн
|
|
Софья, а теперь мне захотелось примеров...
Mikie, мне скорее больше интересны неопределимые числа и функции. Чем гуще тьма, тем интересней! |
Каких примеров)?
|
Матемаг Онлайн
|
|
Примеров функций, которые можно разложить в ряд, но... ну, например, с каждый членом точность частичной суммы ряда будет меньше. Хочу экзотики! Меньше вычислимости, больше тьмы, меньше определяемости, больше мрака!
|
Дык оффтоп уже.
вообще есть алгоритмически неразрешимые проблемы, например https://ru.wikipedia.org/wiki/Десятая_проблема_Гильберта |
Матемаг Онлайн
|
|
Ну и что. Оффтоп ня.
|