Название: | Harry Potter and the Methods of Rationality |
Автор: | Элиезер Юдковский |
Ссылка: | http://www.fanfiction.net/s/5782108/1/Harry_Potter_and_the_Methods_of_Rationality |
Язык: | Английский |
Наличие разрешения: | Разрешение получено |
Мыслит, значит существует (гет) | 216 голосов |
Червь (джен) | 189 голосов |
Luminosity - Сияние разума (гет) | 127 голосов |
Мать Ученья (джен) | 92 голоса |
Что-то придется менять (джен) | 79 голосов |
Dutani рекомендует!
|
|
ВолчьяКошка рекомендует!
|
|
Одно из лучших произведений! И безумно рада, что его напечатали. Теперь мечтаю как-нибудь купить в печатной версии не смотря на то, что читала раз двадцать (и с сайта, и с электронки, и слушала аудиоверсию).
Логика, прекрасная, шикарная логика цепляет с первой главы и вызывает иногда взрыв мозга, так как начинает казаться дико нелогичными многие вещи в каноне. Фантазия у автора не знает границ - и это сочетание с юмором (разговоры со шляпой, банки Прыского чая и пр.). Расчеты (например, как автор заморочился и рассчитал все с валютой в главе с Гринготтсом) вызывает лютое уважение. |
Alex Chapa рекомендует!
|
|
Книга, которую я мгновенно рекомендовал к прочтению всем друзьям.
|
Матиматика не является естественной наукой, так что к реальности отношения не имеет :-)
PS. Почему-то математику постоянно путают с естественными науками. |
Господа, ну зачем вы создаёте комплекс неполноценности у большинства читателей?
Какой такой павлин-мавлин? |
Alaricпереводчик
|
|
>> Ничего не абсурдно, и не иногда, а всегда так и надо, и не для удобства, а потому, что это так, потому, что это _естественно_ так считать.
Оно не очень естественно. А "абсурдно", потому что есть некоторая "разрывность" - ноль в любой положительной степени, в том числе, сколь угодно малой, равен нулю. С другой стороны, да, любое сколь угодно малое положительное число в нулевой степени равно единице. Поэтому тут исключительно вопрос удобства, какую функцию делать непрерывной - степенную или показательную :) Принято делать степенную, но это исключительно вопрос условности :) |
http://www.flibusta.net/b/289629/read
Вот кстати рассказ про миры с разными законами математики. PS: http://lesswrong.ru/w/Как_убедить_меня_в_том,_что_2_плюс_2_равно_3 |
МОРФЕУС: Такой вещи не существует, Нео. Вселенная не подчиняется математическим законам.
НЕО: Тогда мы по прежнему в матрице. |
Матемаг, поинтерейсуйтесь на форуме.
http://lesswrong.ru/forum/index.php |
Alaric, Вы оскорбляете меня в лучших чувствах. Но это-то ладно.
Показать полностью
Я хочу сказать, что математика -- это как бы чуть больше, чем просто игра с символами. Там нет никаких "вопросов условностей". И решения принимаются исходя из смысла того, с чем мы оперируем, а не из "удобства". Из удобства, знаете, можно сказать, что пускай все неизмеримые фигуры будут иметь объем 0, очень удобно (на самом деле, ни разу не очень, но лень придумать другой пример). Считать абсурдным, что графичек какой-то функцийки разрывен -- вот что, уж извините, абсурдно. Теперь серьезно и о конкретном. С одной стороны, да, функция x^y разрывна. И чем бы мы ее в нуле не доопределили, она разрывной все равно останется. Но это не дает повода доопределять как попало. Так же, как и не дает повода говорить, что она не определена в нуле (мало ли в мире разрывных функций, все равно они определены везде). С другой, что такое возведение в степень? В принципе, для всего на свете его определение продолжает определение арифметическое, связанное с умножением, и из него часто вытекает. Для вещественных (а также комплексных и прочих) чисел возведение в натуральную степень совпадает соответствующим числом умножений само на себя, возведение в произвольную степень продолжает эту операцию. Так же определяется и возведение в степень в группах, кольцах и прочих структурах. То есть возведение в 0 степень -- это умножение объекта самого на себя 0 раз. Чему же равно произведение пустого набора объектов? Естественно, это 1 (или, если обобщать, нейтральный по умножению элемент). Можно еще пояснить это таким образом: вот есть у нас набор чисел, если мы добавим в него пустой, то произведение не изменится, значит, произведение пустого набора нейтрально. Так же как сумма пустого набора равна 0, как логическое и пустого набора условий истинно, как логическое или пустого набора условий ложно. Для множеств (а все свойства чисел выводятся из теории множеств) X^Y обозначает множество всех отображений из Y в X, что, впрочем, соотносится с определением умножения семейства множеств, индексированных произвольным множеством. При этом 0 -- это пустое множество, а из пустого мнодества в пустое есть ровно одно отображение -- пустое, так что опять же 0^0 = 1. Наконец, поругаюсь умными страшными словами, о коих представление имею поверхностное. Возведение в степень в произвольной категории (а это обобщает возведение в степень и в числах, и в множествах, и во всем, что пока что на свете есть) -- это предел некоторой диаграммы. Какой не помню, но в случае 0^0 выйдет пустая, а предел пустой диаграммы -- это терминальный объект, он же 1. Но всякие продвинутые понятие возведения в степень -- фиг с ними, это так, для подтверждения. Основная смысловая часть в арифметике еще заложена. И в ней ЕСТЕСТВЕННЫМ образов получается 0^0 = 1. |
Сенектутем
чем дальше развивается математика, тем больше человечество открывает и познает возможностей человеческого мышления. Я бы сузил понятие "математика" до понятия "логика". |
Alaricпереводчик
|
|
Сенектутем
Показать полностью
>> И решения принимаются исходя из смысла того, с чем мы оперируем, а не из "удобства". Не понимаю, в чем противоречие :) И да, вам не удалось привести разумный пример :) Математика - это оперирование абстрактными символами. Которых в реальности не существует. Да, математика активно используется в прочих науках, потому что этими абстрактными символами удобно описывать реальные объекты. Да, зачастую абстрактные символы изначально придумываются, чтобы описывать реальные объекты. Но если мы дискутируем о математике вообще, мы обсуждаем именно абстрактные символы, поэтому негодование мне непонятно :) >> С одной стороны, да, функция x^y разрывна. И чем бы мы ее в нуле не доопределили, она разрывной все равно останется. Перед тем как писать такие вещи, нужно сначала уточнить, у нас речь идет о функции от x, от y или от обеих переменных сразу. И заодно уточнить область определения :) >> мало ли в мире разрывных функций, все равно они определены везде Вы меня огорчаете. Функция y = 1/x в нуле не определена, и пока никому от этого плохо не было. Функция y = sqrt(x) не определена при отрицательных x. В мире есть до чертиков функций, которые где-то не определены. >> Чему же равно произведение пустого набора объектов? Естественно, это 1 (или, если обобщать, нейтральный по умножению элемент). Для меня это совершенно не естественно. Вы бы ещё "очевидно" написали, честное слово :) >> При этом 0 -- это пустое множество, а из пустого мнодества в пустое есть ровно одно отображение -- пустое, так что опять же 0^0 = 1. Вообще-то вы тут где-то потеряли функцию мощности :) >> а все свойства чисел выводятся из теории множеств Это зависит исключительно от того, как мы определяем числа :) |
Если вы еще не читали- я вам завидую!!!!
( и сочувствую- для мира вы потеряны😅😅😅)
Рекомендую!